BPM skrev:Finns någon skillnad i hur mycket effekt (inte i ljudtrycksnivå nu, där jag begriper att basreflex i är överlägsen till en gräns i basen) mina toppar (2xAura NS3 i 10L) tål innan de slår igenom i sin nuvarande basreflexform jämfört med om jag sluter portarna?
Jag tror att frågan är krångligare än du tror. Det finns flera olika begränsningar för hur stark signal man kan skicka till en högtalare, en av dem är att det blir varmt i talspolen. En annan är att konamplituden inte får bli för stor. Det är framför allt den senare som basreflexsystemet hanterar; konamplituden blir lägre för sammma utnivå.
Den termiska effekten är dock knepigare. Det är i allt väsentligt
strömmen genom talspolen som alstrar värme. Effekten P=I²*Re. Hur stor strömmen blir beror på förstärkarens utspänning och högtalarsystemets impedans Z. Z är frekvenseberoende och olika för slutet resp. basreflex. Effekten som utvecklas i talspolen är för många frekvenser mycket mindre än förstärkarens maximala uteffekt. En förstärkare på 500 W (8 ohm) lämnar bara maximalt 100 W om högtalaren har en impedanstopp på 40 ohm. Förstärkare har ju typiskt en maximal
spänning U, som det är brukligt att räkna om till "åttaohmswatt". Och tillsammans med den frekvensberoende impedansen och I=U/Z blir det otrivialt.
Men jag undrar om din fråga inte egentligen är vilket av de två systemen som tål kraftigast förstärkare, alltså egentligen vilket som tål mest spänning.
Svaret är att det beror på frekvens. Jag gjorde en liten simulering med Basta!s defaultsystem, där jag pluggade porten. Kurvorna som visas är, nerifrån: Impedans, spänning vid max utnivå, tonkurva och max utnivå. För det slutna systemet begränsas den maximala utnivån av konutslaget under c:a 110 Hz och av värmeutvecklingen däröver. Basreflexen är likadan med skillnaden att den begränsas också termiskt mellan 25 och 45 Hz. Den har ju betydligt lägre konamplitud runt helmholtsresonansen. Maximal spänning blir lite högre för basreflexen över 35 Hz (där helmholtzresonansen ligger), men lägre under.
Ovanstående innehåller en hel del "förståelseapproximationer".

Så länge har jag längat efter att loudness war skulle vara över. Nu börjar jag tro att vi faktiskt är där. Kruxet är att vi förlorade.