Tävling - hur mycket kan man överstyra en DAC?

Hur funkar tekniken bakom bra hifi?

Moderator: Redaktörer

Användarvisningsbild
Piotr
 
Inlägg: 12464
Blev medlem: 2005-02-06

Re: Tävling - hur mycket kan man överstyra en DAC?

Inläggav Piotr » 2014-04-28 11:13

IngOehman skrev:PS. Det finns kul saker man kan göra dock, om man får spåna lite. En kul sak man kan göra, som
i hög grad förbättrar möjligheten att koda höga frekvenser som är statiska, är att addera ett tids-
brus på samplingsfrekvensen. Ett känt brus, t ex ett i förväg bestämt brusmönster. Egentligen är
det inte optimalt att kalla det ett brus kanske dock. Det kan ju vara något så enkelt som en fas-
togglande frekvens, men möjligheterna är legio.

Det är lite småspännade att räkna lite på vad som händer om man gör så, och sedan extraherar
så mycket info som finns ur det som man samplat sålunda...


Det du beskriver är väl i princip ett "equivalent time sampling oscilloscope"..?

/Peter

Användarvisningsbild
idea
 
Inlägg: 863
Blev medlem: 2010-12-14
Ort: Gbg

Re: Tävling - hur mycket kan man överstyra en DAC?

Inläggav idea » 2014-04-29 11:27

Svante skrev:
IngOehman skrev:Okej... Ny infallsvinkel, som jag hoppas jag skall nå fram med: Det är till ingen eller väldigt
måttlig nytta, att veta cosinusdelens amplitud allena.

Den kan vara noll trots att man har massor av signal, och även om man har en cosinusdel så
säger den inte något annat om signalen än att den är MINST så stor.

Därför är cosinusdelen av intet värde. Det är otillräcklig information om signalen för att sig-
nalen skall kunna beskrivas.

- - -

Så igen - BÅDE amplitud och fas för frekvensen Fh/2 är ovetbar. Och därför så får den inte
finnas med, alls. Detta alltså trots att man från sampeldata (ja, cosdelen) kan se hur stor in-
signalen var "minst".

- - -

Men det är inte möjligt att veta precis hur insignalen såg ut, och därför är det ju heller inte
möjligt att rekonstruera den från sampledata.

Gick det fram nu då?


Vh, iö


Ja, det gick fram den här gången och den förra. Jag förstår precis det du säger.

Och med all önskvärd tydlighet framgår det att du ENBART ser Fourierserierna som ett sätt att beskriva en samplad signal som har varit analog.

Det gör inte jag.

Kan du tänka dig att man vill beskriva en godtycklig sampelsekvens med N sampel med N Fourierkoefficienter? Utan cosinuskomponenten vid fs/2 GÅR inte det i det allmänna fallet. Du kan förstås bestäma att vissa sekvenser inte är tillåtna, men det finns ingen naturlag som säger att jag inte får göra sekvensen [1 -1 1 -1 1 -1 1 -1] och vill veta dess Fourierserie.

Jag tycker det är intressant, och många som lär sig detaljerna med den diskreta Fouriertransformen har nytta av det. Tex programmerare.

Det är framför allt ordet "otillåtet" som jag har problem med, det exkluderar en massa synsätt som är användbara.

Jag vet inte hur mycket du har läst i tråden, men jag har känslan att du har läst rätt ordentligt, och kanske kan du förstå att jag i undersökandet av hur stor översläng det kan bli i en DAC utgår från en sinc som interpolatör och försöker hitta den digitala sekvens som ger störst utsignal. Tycker du inte att det är en rimlig utgångspunkt? Det visade sig att toppamplituden kan bli hur stor som helst i detta teoretiska fall. Shit happens. Dessbättre är det inte så med verkliga implementationer, men det blir olika med olika implementationer, så man kan inte säga hur mycket marginal som behövs. Det är väl också ett intressant resultat, kan jag tycka.

Hur skulle du undersöka vilken marginal som behövs i en översamplande DAC?


Om vi säger "matematisk inkorrekt" istället för "otillåtet" så kanske du kan svälja det. Det du inte verkar förstå är att signalen inte innehåller någon information vid fs/2. Om du inte har fasinformationen så kan du ju sampla precis var som helst på sinusen och den amplitud du ser korrelerar inte med den "verkliga" på något sätt (inte ens om din skapade amplitud är noll). I ett amplituddiskret system så ger upplösningen den minsta möjliga inversa toppamplituden men i ett kontinuerligt system så finns ingen gräns vilket du redan bevisat men tydligen inte förstått varför.
Idea what a great ID

Användarvisningsbild
Svante
Audiot!
 
Inlägg: 37552
Blev medlem: 2004-03-03
Ort: oakustisk

Re: Tävling - hur mycket kan man överstyra en DAC?

Inläggav Svante » 2014-04-29 11:44

idea skrev:Om vi säger "matematisk inkorrekt" istället för "otillåtet" så kanske du kan svälja det. Det du inte verkar förstå är att signalen inte innehåller någon information vid fs/2. Om du inte har fasinformationen så kan du ju sampla precis var som helst på sinusen och den amplitud du ser korrelerar inte med den "verkliga" på något sätt (inte ens om din skapade amplitud är noll). I ett amplituddiskret system så ger upplösningen den minsta möjliga inversa toppamplituden men i ett kontinuerligt system så finns ingen gräns vilket du redan bevisat men tydligen inte förstått varför.


Jag tror jag förstår precis vad som händer. Nä, det är inte matematiskt inkorrekt heller, och jag förstår precis att fasinformationen inte finns. Du däremot verkar förutsätta att det rör sig just om sampling av en analog signal. Det gör inte jag. Jag försöker beskriva en sekvens av sampel i den tidsdiskreta världen. Och för att beskriva en sådan signal, tex 8 sampel [1 -1 1 -1 1 -1 1 -1 ] så behövs cosinustermen vid fs/2. Däremot blir sinustermen vid fs/2 meningslös eftersom den bara ger nollor. Om du inte håller med mig om det; hur skulle du beskriva sekvensen [1 -1 1 -1 1 -1 1 -1 ] som en Fourierserie? Alla sekvenser kan ju beskrivas med en Fourierserie enligt Fourier.

Man kan välja att se komponenten vid godtycklig frekvens som en sinus med en amplitud och en fasförskjutning. Gör man det säger fouriertransformen ingenting (nästan) om vare sig amplitud eller fas vid fs/2.

Man kan också välja att se komponenten vid en godtycklig frekvens som en summa av en sinus och en cosinus, vardera med en amplitud. Gör man så säger foruiertransformen inget om sinusens amplitud, vid fs/2, men däremot får man veta cosinusens amplitud. Det är fö precis som vid DC. Vid DC får man veta cosinusens amplitud, sinusdelen däremot blir noll, och den ser man inget av i samplen.

Inalles ger det 8 tal (frihetsgrader) som beskriver en 8 sampel lång sekvens. Utan den 8:e (cosinustermen vid fs/2) går det inte att beskriva alla 8 sampel långa sekvenser med en Fourierserie. Man förlorar en frihetsgrad.
Så länge har jag längat efter att loudness war skulle vara över. Nu börjar jag tro att vi faktiskt är där. Kruxet är att vi förlorade.

Användarvisningsbild
idea
 
Inlägg: 863
Blev medlem: 2010-12-14
Ort: Gbg

Re: Tävling - hur mycket kan man överstyra en DAC?

Inläggav idea » 2014-04-30 10:08

Det var för länge sedan som jag handräknade fourierserier eller fouriertransformen för att jag riktigt skall kunna se var du går vilse. För vilse måste du vara, men jag kan inte genomskåda vad det är som fallerar. Vad jag definitivt vet är att varje fourierserie som innehåller fs/2 har oändligt många lösningar. Det enda man kan veta är vilka lösningar som inte finns med, dvs de med amplitud mindre än koefficienten vid fs/2 (du får fortfarande oändligt många lösningar eftersom detta inte påverkar oändligheten). Detta gäller oavsett åt vilket håll du transformerar.
Jag kan Matlab för dåligt för att kunna se vad den spottar ut men i alla implementationer av fouriertransformationer jag jobbat med så får du av 1024 tidssteg ut DC + 511 frekvenser dvs fs/2 ingår inte och denna serie (512 punkter med real och imaginärdel) kan inverstransformeras entydigt.
Det jag kan tänka mig är att du misstolkar den talserie du får ut från Matlab. Där ser du ju inte vad talen representerar bara en vektor med tal som du själv får tolka vad det står för.
Idea what a great ID

Användarvisningsbild
Svante
Audiot!
 
Inlägg: 37552
Blev medlem: 2004-03-03
Ort: oakustisk

Re: Tävling - hur mycket kan man överstyra en DAC?

Inläggav Svante » 2014-04-30 21:40

idea skrev:Det var för länge sedan som jag handräknade fourierserier eller fouriertransformen för att jag riktigt skall kunna se var du går vilse. För vilse måste du vara, men jag kan inte genomskåda vad det är som fallerar. Vad jag definitivt vet är att varje fourierserie som innehåller fs/2 har oändligt många lösningar. Det enda man kan veta är vilka lösningar som inte finns med, dvs de med amplitud mindre än koefficienten vid fs/2 (du får fortfarande oändligt många lösningar eftersom detta inte påverkar oändligheten). Detta gäller oavsett åt vilket håll du transformerar.
Jag kan Matlab för dåligt för att kunna se vad den spottar ut men i alla implementationer av fouriertransformationer jag jobbat med så får du av 1024 tidssteg ut DC + 511 frekvenser dvs fs/2 ingår inte och denna serie (512 punkter med real och imaginärdel) kan inverstransformeras entydigt.
Det jag kan tänka mig är att du misstolkar den talserie du får ut från Matlab. Där ser du ju inte vad talen representerar bara en vektor med tal som du själv får tolka vad det står för.


Det finns ju en förklaring till, nämligen att du har gått vilse ;) . Eller inte förstår skillnaden mellan det vi pratar om.

Det du berättar är den praktiska konsekvensen av att man inte vet sinuskomponenten vid fs/2 vid fourieranalys och att man därför inte kan sampla en analog signal som innehåller fs/2 med godtyckligt fasläge och återskapa den. Det är jag helt med på.

Men det är inte det jag beskriver, jag beskriver att man kan beskriva en godtyklig digital sekvens av sampel med lika många sinus- och cosinustermer som man har sampel. För att beskriva en 8 sampel lång sekvens behövs tre sinustermer, tre cosinustermer ytterligare en cosinusterm för frekvensen noll och en cosinusterm för fs/2.

Och alla sekvenser går inte att beskriva om man tvingar cosinustermen vid fs/2 till 0. Det är precis analogt med att man måste ha en cosinusterm vid f=0 (=en konstant) om signalen ska kunna innehålla DC. Men vi behöver inte veta sinuskomponenten vid DC, för den bli ju 0. Samma sak är det med sinuskomponenten vid fs/2.

Vi pratar om två aningen olika saker.
Så länge har jag längat efter att loudness war skulle vara över. Nu börjar jag tro att vi faktiskt är där. Kruxet är att vi förlorade.

Användarvisningsbild
Svante
Audiot!
 
Inlägg: 37552
Blev medlem: 2004-03-03
Ort: oakustisk

Re: Tävling - hur mycket kan man överstyra en DAC?

Inläggav Svante » 2014-05-01 00:31

idea skrev:Jag kan Matlab för dåligt för att kunna se vad den spottar ut men i alla implementationer av fouriertransformationer jag jobbat med så får du av 1024 tidssteg ut DC + 511 frekvenser dvs fs/2 ingår inte och denna serie (512 punkter med real och imaginärdel) kan inverstransformeras entydigt.
Det jag kan tänka mig är att du misstolkar den talserie du får ut från Matlab. Där ser du ju inte vad talen representerar bara en vektor med tal som du själv får tolka vad det står för.


Nja, det inte bara Matlab, jag tog den för att jag trodde att den var mest allmänt känd. Jag brukar annars använda de FFT-rutiner som jag har skrivit själv.

Du inser att DC + 511 komplexa tal bara representerar 1023 olika tal/frihetsgrader? Den 1024 som du behöver finns i cosinustermen för fs/2.

En FFT tar ju egentligen komplexa tal in. Om vi stannar vid en 1024-punkters FFT så matar man alltså in 1024 komplexa tal. Ur det kommer 1024 komplexa tal. Och det är alltså INTE så enkelt som att de 512 första av dessa (0..511) är de intressanta om man matar FFTn med reella tal. Det första utvärdet är reellt om indata är reellt och representerar DC. Sinusdelen är noll. På samma sätt finns cosinusdelen för fs/2 i realdelen i det 513:e elementet, eller nummer 512 om man börjar räkna från 0. I imaginärdelen till element nummer 0 och 512 ligger motsvarande delar för imaginärdelen av indatat. Övriga delar får man extrahera genom att spektrum är jämnt respektive udda för real- och imaginärdelarna av insignalen.

Jag kan förstå att man utelämnar det 513:e elementet om man sysslar med AD-omvandling, jag gör det själv ofta, man är ju inte intresserad av exakt matematisk inverterbarhet. fs/2 ska ju vara såpass tilltagen att det inte finns någon info av vikt (höhö) där.
Så länge har jag längat efter att loudness war skulle vara över. Nu börjar jag tro att vi faktiskt är där. Kruxet är att vi förlorade.

Användarvisningsbild
idea
 
Inlägg: 863
Blev medlem: 2010-12-14
Ort: Gbg

Re: Tävling - hur mycket kan man överstyra en DAC?

Inläggav idea » 2014-05-01 21:00

DC+511 * 2 =1024, lägger vi till cosinustermen vid fs/2 blir det 1025. DC har formellt både real och imaginärdel men im är alltid identiskt noll.
Funktionen är periodisk och upprepar sig i all oändlighet men det är ju bara upprepningar, all information finns i den första delen. Det är ju hela definitionen av fourierserier att det är periodiska funktioner.
Så långt jag kan förstå så måste det du diskuterar inte vara en fourierserie utan någon annan serieutveckling och då faller ju i så fall alla mina invändningar eftersom de bara gäller fourierserier...
Idea what a great ID

Användarvisningsbild
Svante
Audiot!
 
Inlägg: 37552
Blev medlem: 2004-03-03
Ort: oakustisk

Re: Tävling - hur mycket kan man överstyra en DAC?

Inläggav Svante » 2014-05-01 22:20

idea skrev:DC+511 * 2 =1024, lägger vi till cosinustermen vid fs/2 blir det 1025. DC har formellt både real och imaginärdel men im är alltid identiskt noll.
Funktionen är periodisk och upprepar sig i all oändlighet men det är ju bara upprepningar, all information finns i den första delen. Det är ju hela definitionen av fourierserier att det är periodiska funktioner.
Så långt jag kan förstå så måste det du diskuterar inte vara en fourierserie utan någon annan serieutveckling och då faller ju i så fall alla mina invändningar eftersom de bara gäller fourierserier...


På vilket sätt representerar ett tal som alltid är noll en frihetsgrad? Alltså den nollade imaginärdelen vid DC. Och jo, det är en Fourierserie.

Alltså, jag har varit igenom detta och hade då lika svårt som du att ta steget från de översiktliga beskrivningarna till vad fouriertransformen gör till detaljmeket som man måste göra om man ska skriva FFT-rutinerna själv.

Jag tror inte att jag kan skriva något som jag inte redan har skrivit nu, och jag tror att jag begriper fullständigt hur det är och vad din syn är så det är inte mycket vits att skriva samma sak igen. Jag tror inte att jag når fram till dig bättre utan att du sätter dig ner och leker med Fourierserierna i detalj med något lämpligt program eller papper och penna. Jag skulle leka i Matlab, men det finns ju andra som är bra också.

Kom gärna igen om du kommer på någon annan infallsvinkel eller undrar något. Jag är ju ändå lärare ;) .
Så länge har jag längat efter att loudness war skulle vara över. Nu börjar jag tro att vi faktiskt är där. Kruxet är att vi förlorade.

Användarvisningsbild
DanNorman
 
Inlägg: 1776
Blev medlem: 2006-09-25
Ort: Södertälje

Re: Tävling - hur mycket kan man överstyra en DAC?

Inläggav DanNorman » 2014-05-01 22:21

! :)
Medlem på forumet Faktiskt.se sedan sept 26, 2006.
Man skall inte krångla till saker i onödan; går det att lösa med hydraulik så är det oftast enklast. © Phon
Driver Södertälje Specialsnickeri AB.

Användarvisningsbild
sebatlh
 
Inlägg: 2265
Blev medlem: 2008-06-02
Ort: Knutby

Re: Tävling - hur mycket kan man överstyra en DAC?

Inläggav sebatlh » 2014-05-02 08:24

Sidnot: Matlab är dyrt. För de utan licens finns python/scipy. Har aldrig använt just dessa fft rutiner men scipy brukar vara bra skit som man säger :)
http://docs.scipy.org/doc/numpy/referen ... .fft.html#

Intressant topic för övrigt. Självklart på sätt och vis såhär i efterhand men knappast något jag ens reflekterat över tidigare.
Deinde scriptum.

Användarvisningsbild
Svante
Audiot!
 
Inlägg: 37552
Blev medlem: 2004-03-03
Ort: oakustisk

Re: Tävling - hur mycket kan man överstyra en DAC?

Inläggav Svante » 2014-05-02 08:41

sebatlh skrev:Sidnot: Matlab är dyrt. För de utan licens finns python/scipy. Har aldrig använt just dessa fft rutiner men scipy brukar vara bra skit som man säger :)
http://docs.scipy.org/doc/numpy/referen ... .fft.html#

Intressant topic för övrigt. Självklart på sätt och vis såhär i efterhand men knappast något jag ens reflekterat över tidigare.


Ja, och där står det jag har försökt få fram, kanske dokumentationen till ett programbibliotek kan övertyga mer än jag kan.

For an even number of input points, A[n/2] represents both positive and negative Nyquist frequency, and is also purely real for real input
Så länge har jag längat efter att loudness war skulle vara över. Nu börjar jag tro att vi faktiskt är där. Kruxet är att vi förlorade.

Användarvisningsbild
lilltroll
 
Inlägg: 1697
Blev medlem: 2005-01-03

Re: Tävling - hur mycket kan man överstyra en DAC?

Inläggav lilltroll » 2014-05-02 21:04

idea skrev:Det var för länge sedan som jag handräknade fourierserier eller fouriertransformen för att jag riktigt skall kunna se var du går vilse. För vilse måste du vara, men jag kan inte genomskåda vad det är som fallerar. Vad jag definitivt vet är att varje fourierserie som innehåller fs/2 har oändligt många lösningar. Det enda man kan veta är vilka lösningar som inte finns med, dvs de med amplitud mindre än koefficienten vid fs/2 (du får fortfarande oändligt många lösningar eftersom detta inte påverkar oändligheten). Detta gäller oavsett åt vilket håll du transformerar.
Jag kan Matlab för dåligt för att kunna se vad den spottar ut men i alla implementationer av fouriertransformationer jag jobbat med så får du av 1024 tidssteg ut DC + 511 frekvenser dvs fs/2 ingår inte och denna serie (512 punkter med real och imaginärdel) kan inverstransformeras entydigt.
Det jag kan tänka mig är att du misstolkar den talserie du får ut från Matlab. Där ser du ju inte vad talen representerar bara en vektor med tal som du själv får tolka vad det står för.


Har inte tanken slagit dig än att Svante har rätt och att du i alla implementationer som du jobbat med i så fall har räknat fel :?: :!:

I så fall hoppas jag den tanken föds nu.


Table 2.1 sid 26 visar en numerisk 12 punkters DFT.

http://books.google.se/books?id=V8Z0PXZ ... &q&f=false

I figure 2.6 så kan man se k=6

Sedan kan man läsa på sida 26

k=6 : v6=cos(pi*n) = (-1)^n

Antingen så Har du rätt, och då har boken fel.
Eller Så har Boken rätt där cos(pi*n) finns med i den diskreta tidsdomänen och även har en motsvarande mod: k=6 i den diskreta frekvensdomänen, och då har du fel.
så får du av 1024 tidssteg ut DC + 511 frekvenser dvs fs/2 ingår inte och denna serie


Hela boken heter The DFT: An Owners' Manual for the Discrete Fourier så det är inga suspekta serier som Svante hittat på.

PS.
Table 3.1 sid 69 visar en uppsjö av olika former av DFT.
Sida 70-71 visar vilka definitioner olika program eller FFT-paket använder.

Dessutom tror jag att Svante i denna bok kan hitta referenser till de påståenden han kommit med ovan som styrker eller bevisar det Svante skrivit angående DFT:n, men jag tycker inte han ska ta sig tiden till att göra det.
DS.
Beach 2010 - Nyårslöftet - ehh ingen kommentar
* * * * * * * * * * * * * * * * *

Användarvisningsbild
hcl
 
Inlägg: 2092
Blev medlem: 2013-07-16

Re: Tävling - hur mycket kan man överstyra en DAC?

Inläggav hcl » 2014-05-04 19:13

Intressant analys.

Jag kan vidimera att detta kan vara ett problem även "i verkligheten". De första mjukvaruversionerna till Linn:s nätverksspelare hade inte tillräckligt head-room för kraftigt överstyrda signaler. Detta löstes med senare mjukvarureleaser (fr.o.m. mjukvaruversion CARA, om jag kommer ihåg rätt).

Användarvisningsbild
Ragnwald
 
Inlägg: 17608
Blev medlem: 2005-02-13
Ort: Gotland

Re: Tävling - hur mycket kan man överstyra en DAC?

Inläggav Ragnwald » 2014-05-05 20:55

Intressant.
Den som vet mest, tror minst.

Föregående

Återgå till Teknikforum


Vilka är online

Användare som besöker denna kategori: Inga registrerade användare och 8 gäster